Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders.

نویسندگان

  • Rodney C Samaco
  • Raman P Nagarajan
  • Daniel Braunschweig
  • Janine M LaSalle
چکیده

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in MECP2, encoding methyl-CpG-binding protein 2 (MeCP2). Although MECP2 is ubiquitously transcribed, MeCP2 expression is developmentally regulated and heterogeneous in neuronal subpopulations, defined as MeCP2(lo) and MeCP2(hi). To test the hypothesis that pathways affecting MeCP2 expression changes may be defective in RTT, autism and other neurodevelopmental disorders without MECP2 mutations, a high-throughput quantitation of MeCP2 expression was performed on a tissue microarray containing frontal cortex samples from 28 different patients with neurodevelopmental disorders and age-matched controls. Combined quantitative analyses of MeCP2 protein and alternatively polyadenylated transcript levels were performed by laser scanning cytometry and tested for significant differences from age-matched controls. Normal cerebral samples showed an increase in total MeCP2 expression and the percentage of MeCP2(hi) cells with age that could be explained by increased MECP2 transcription within the MeCP2(hi) population. A significant decrease in the relative usage of the long transcript in the MeCP2(lo) population was observed in postnatal compared to fetal brain, but alternate polyadenylation did not correlate with MeCP2 expression changes at the single cell level. Brain samples from several related neurodevelopmental disorders, including autism, pervasive developmental disorder, Prader-Willi and Angelman syndromes showed significant differences in MeCP2 expression from age-matched controls by apparently different transcriptional and post-transcriptional mechanisms. These results suggest that multiple pathways regulate the complex developmental expression of MeCP2 and are defective in autism-spectrum disorders in addition to RTT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 138: Improving Neuroplasticity Through Neuroinflammation Pathways as a Therapeutic Goal in the Treatment of Autism

Neuroplasticity is the brain's ability to reorganize itself by forming new neural connections throughout life. Neuroplasticity allows the neurons in the brain to compensate injury and disease and to adjust their activities in response to new situations or to changes in their environment. At the other side, it is now well established that neuronal function is strongly influenced by both central ...

متن کامل

Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation.

Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are "pervasive developmental disorders" and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations ...

متن کامل

The Profile of Functional Emotional Development of Children with Autism Spectrum Disorders from the Perspective of Developmental, Individual Differences(DIR), Relationship-based Approach

Introduction: The dominant approach in the etiology and treatment of autism spectrum disorder (ASD) is a behavioral approach. Proponents of the behavioral model believe that children with autism in access to capabilities in achieving love, empathy, language and creative thinking, have significant fundamental defects.  Instead model-based development of individual differences relationship offers...

متن کامل

Reciprocal regulation of autism-related genes MeCP2 and PTEN via microRNAs

MeCP2 encodes a methyl-CpG-binding protein that plays a critical role in repressing gene expression, mutations of which lead to Rett syndrome and autism. PTEN is a critical tumor suppressor gene that is frequently mutated in human cancers and autism spectrum disorders. Various studies have shown that both MeCP2 and PTEN proteins play important roles in brain development. Here we find that MeCP2...

متن کامل

Genome-Wide Activity-Dependent MeCP2 Phosphorylation Regulates Nervous System Development and Function

Autism spectrum disorders such as Rett syndrome (RTT) have been hypothesized to arise from defects in experience-dependent synapse maturation. RTT is caused by mutations in MECP2, a nuclear protein that becomes phosphorylated at S421 in response to neuronal activation. We show here that disruption of MeCP2 S421 phosphorylation in vivo results in defects in synapse development and behavior, impl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2004